Cauchy-Rassias Stability of Sesquilinear $n$-Quadratic Mappings in Banach Modules

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces

In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations (2 ) ( ) 6 ( )     f x y f x y f x and (3 ) ( ) 16 ( )     f x y f x y f x for the mapping f from normed linear space in to 2-Banach spaces.

متن کامل

Cauchy–rassias Stability of Homomorphisms Associated to a Pexiderized Cauchy–jensen Type Functional Equation

We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation r f ( x+ y r ) + sg ( x− y s ) = 2h(x), r,s ∈ R\{0}

متن کامل

Stability of Quadratic Modules

A finitely generated quadratic module or preordering in the real polynomial ring is called stable, if it admits a certain degree bound on the sums of squares in the representation of polynomials. Stability, first defined explicitly in [PS], is a very useful property. It often implies that the quadratic module is closed; furthermore it helps settling the Moment Problem, solves the Membership Pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2009

ISSN: 0035-7596

DOI: 10.1216/rmj-2009-39-6-2015